Developing stochastic models for spatial inference: bacterial chemotaxis

Yu, Y.D., Choi, Y., Teo, Y.Y. and Dalby, A.R. 2010. Developing stochastic models for spatial inference: bacterial chemotaxis. PLoS ONE. 5 (5) e10464. https://doi.org/10.1371/journal.pone.0010464

TitleDeveloping stochastic models for spatial inference: bacterial chemotaxis
TypeJournal article
AuthorsYu, Y.D., Choi, Y., Teo, Y.Y. and Dalby, A.R.
Abstract

Background: Biological systems are inherently inhomogeneous and spatial effects play a significant role in processes such as pattern formation. At the cellular level proteins are often localised either through static attachment or via a dynamic equilibrium. As well as spatial heterogeneity many cellular processes exhibit stochastic fluctuations and so to make inferences about the location of molecules there is a need for spatial stochastic models. A test case for spatial models has been bacterial chemotaxis which has been studied extensively as a model of signal transduction. Results: By creating specific models of a cellular system that incorporate the spatial distributions of molecules we have shown how the fit between simulated and experimental data can be used to make inferences about localisation, in the case of bacterial chemotaxis. This method allows the robust comparison of different spatial models through alternative model parameterisations.

Conclusions: By using detailed statistical analysis we can reliably infer the parameters for the spatial models, and also to evaluate alternative models. The statistical methods employed in this case are particularly powerful as they reduce the need for a large number of simulation replicates. The technique is also particularly useful when only limited molecular level data is available or where molecular data is not quantitative.

Article numbere10464
JournalPLoS ONE
Journal citation5 (5)
ISSN1932-6203
Year2010
PublisherPublic Library of Science
Digital Object Identifier (DOI)https://doi.org/10.1371/journal.pone.0010464
Publication dates
Published13 May 2010
File

Related outputs

microRNA 1307 Is a Potential Target for SARS-CoV-2 Infection: An <i>in Vitro</i> Model
Arisan, Elif Damla, Dart, D. Alwyn, Grant, Guy H., Dalby, A.R., Kancagi, Derya Dilek, Turan, Raife Dilek, Yurtsever, Bulut, Karakus, Gozde Sir, Ovali, Ercument, Lange, Sigrun and Uysal-Onganer, P. 2022. microRNA 1307 Is a Potential Target for SARS-CoV-2 Infection: An <i>in Vitro</i> Model. ACS Omega. 7 (42), pp. 38003-38014. https://doi.org/10.1021/acsomega.2c05245

Bacterial Adaptation to Venom in Snakes and Arachnida
Esmaeilishirazifard, Elham, Usher, Louise, Trim, Carol, Denise, Hubert, Sangal, V., Tyson, G., Barlow, Axel, Redway, Keith F, Taylor, John D, Kremyda-Vlachou, Myrto, Davies, Sam, Loftus, Teresa D, Lock, Mikaella M G, Wright, Kstir, Dalby, Andrew, Snyder, L., Wuster, Wolfgang, Trim, Steve and Moschos, S. 2022. Bacterial Adaptation to Venom in Snakes and Arachnida. Microbiology Spectrum. 10 (3) e02408-21. https://doi.org/10.1128/spectrum.02408-21

Complete analysis of the H5 hemagglutinin and N8 neuraminidase phylogenetic trees reveals that the H5N8 subtype has been produced by multiple reassortment events
Dalby, A.R. 2016. Complete analysis of the H5 hemagglutinin and N8 neuraminidase phylogenetic trees reveals that the H5N8 subtype has been produced by multiple reassortment events. F1000Research . 5, p. 2463 2463. https://doi.org/10.12688/f1000research.9261.1

Molecular dynamics simulations of the temperature-induced unfolding of crambin follow the Arrhenius equation
Dalby, A.R. and Shamsir, M. 2015. Molecular dynamics simulations of the temperature-induced unfolding of crambin follow the Arrhenius equation. F1000Research. 4 (589). https://doi.org/10.12688/f1000research.6831.1

The European and Japanese outbreaks of H5N8 derive from a single source population providing evidence for the dispersal along the long distance bird migratory flyways
Dalby, A.R. and Iqbal, M. 2015. The European and Japanese outbreaks of H5N8 derive from a single source population providing evidence for the dispersal along the long distance bird migratory flyways. PeerJ. 3 e934. https://doi.org/10.7717/peerj.934

A global phylogenetic analysis in order to determine the host species and geography dependent features present in the evolution of avian H9N2 influenza hemagglutinin
Dalby, A.R. and Iqbal, M. 2014. A global phylogenetic analysis in order to determine the host species and geography dependent features present in the evolution of avian H9N2 influenza hemagglutinin. PeerJ. 2 e655. https://doi.org/10.7717/peerj.655

The Robustness of Pathway Analysis in Identifying Potential Drug Targets in Non-Small Cell Lung Carcinoma
Dalby, A.R. and Bailey, I. 2014. The Robustness of Pathway Analysis in Identifying Potential Drug Targets in Non-Small Cell Lung Carcinoma. Microarrays. 3 (4), pp. 212-225. https://doi.org/10.3390/microarrays3040212

Analysis of gene expression data from non-small celllung carcinoma cell lines reveals distinct sub-classesfrom those identified at the phenotype level
Dalby, A.R., Emam, I. and Franke, R. 2012. Analysis of gene expression data from non-small celllung carcinoma cell lines reveals distinct sub-classesfrom those identified at the phenotype level. PLoS ONE. 7 (11) e50253. https://doi.org/10.1371/journal.pone.0050253

Identification of Schistosoma mansoni microRNAs
Simões, M.C., Lee, J., Djikeng, A., Cerqueira, G.C., Zerlotini, A., da Silva-Pereira, R.A., Dalby, A.R., LoVerde, P., El-Sayed, N.M. and Oliveira, G. 2011. Identification of Schistosoma mansoni microRNAs. BMC Genomics. 12 (47), pp. 1-17. https://doi.org/10.1186/1471-2164-12-47

A comparative proteomic analysis of the simple aminoacid repeat distributions in Plasmodia reveals lineagespecific amino acid selection
Dalby, A.R. 2009. A comparative proteomic analysis of the simple aminoacid repeat distributions in Plasmodia reveals lineagespecific amino acid selection. PLoS ONE. 4 (7) e6231. https://doi.org/10.1371/journal.pone.0006231

Beta-sheet containment by flanking prolines: molecular dynamic simulations of the inhibition of beta-sheet elongation by proline residues in human prion protein.
Shamsir, M.S. and Dalby, A.R. 2007. Beta-sheet containment by flanking prolines: molecular dynamic simulations of the inhibition of beta-sheet elongation by proline residues in human prion protein. Biophysical Journal. 92 (6), pp. P2080-2089. https://doi.org/10.1529/biophysj.106.092320

COPASAAR--a database for proteomic analysis of single amino acid repeats.
Depledge, D.P. and Dalby, A.R. 2005. COPASAAR--a database for proteomic analysis of single amino acid repeats. BMC Bioinformatics. https://doi.org/10.1186/1471-2105-6-196

Predicting the phosphorylation sites using hidden Markov models and machine learning methods.
Senawongse, P., Dalby, A.R. and Yang, Z.R. 2005. Predicting the phosphorylation sites using hidden Markov models and machine learning methods. Journal of Chemical Information and Modeling. 45 (4), pp. 1147-1152. https://doi.org/10.1021/ci050047+

Evaluation of mutual information and genetic programming for feature selection in QSAR.
Venkatraman, V., Dalby, A.R. and Yang, Z.R. 2004. Evaluation of mutual information and genetic programming for feature selection in QSAR. Journal of Chemical Information and Computer Sciences. 44 (5), pp. 1686-1692. https://doi.org/10.1021/ci049933v

Reduced bio basis function neural network for identification of protein phosphorylation sites: comparison with pattern recognition algorithms.
Berry, E.A., Dalby, A.R. and Yang, Z.R. 2004. Reduced bio basis function neural network for identification of protein phosphorylation sites: comparison with pattern recognition algorithms. Computational Biology and Chemistry. 28 (1), pp. 75-85. https://doi.org/10.1016/j.compbiolchem.2003.11.005

Constructing an enzyme-centric view of metabolism.
Horne, A.B., Hodgman, T.C., Spence, H.D. and Dalby, A.R. 2004. Constructing an enzyme-centric view of metabolism. Bioinformatics. 20 (13), pp. 2050-2055. https://doi.org/10.1093/bioinformatics/bth199

Mining HIV protease cleavage data using genetic programming with a sum-product function.
Yang, Z.R., Dalby, A.R. and Qiu, J. 2004. Mining HIV protease cleavage data using genetic programming with a sum-product function. Bioinformatics. 20 (18), pp. 3398-3405. https://doi.org/10.1093/bioinformatics/bth414

The structure of human liver fructose-1,6-bisphosphate aldolase
Dalby, A.R., Tolan, D.R. and Littlechild, J.A. 2002. The structure of human liver fructose-1,6-bisphosphate aldolase. Acta Crystallographica Section D. D57, pp. 1526-1533. https://doi.org/10.1107/s0907444901012719

Structural and functional comparisons between vanadium haloperoxidase and acid phosphatase enzymes.
Littlechild, J., Garcia-Rodriguez, E., Dalby, A.R. and Isupov, M. 2002. Structural and functional comparisons between vanadium haloperoxidase and acid phosphatase enzymes. Journal of Molecular Recognition. 15 (5), pp. 291-296. https://doi.org/10.1002/jmr.590

Crystal structure of dodecameric vanadium-dependent bromoperoxidase from the red algae Corallina officinalis.
Isupov, M.N., Dalby, A.R., Brindley, A.A., Izumi, Y., Tanabe, T., Murshudov, G.N. and Littlechild, J.A. 2000. Crystal structure of dodecameric vanadium-dependent bromoperoxidase from the red algae Corallina officinalis. Journal of Molecular Biology. 299 (4), pp. 1035-1049. https://doi.org/10.1006/jmbi.2000.3806

Crystal structure of human muscle aldolase complexed with fructose 1,6-bisphosphate: mechanistic implications.
Dalby, A.R., Dauter, Z. and Littlechild, J.A. 1999. Crystal structure of human muscle aldolase complexed with fructose 1,6-bisphosphate: mechanistic implications. Protein Science. 8 (2), pp. 291-297. https://doi.org/10.1110/ps.8.2.291

Structure of a phosphoglycerate mutase:3-phosphoglyceric acid complex at 1.7 A.
Crowhurst, G.S., Dalby, A.R., Isupov, M.N., Campbell, J.W. and Littlechild, J.A. 1999. Structure of a phosphoglycerate mutase:3-phosphoglyceric acid complex at 1.7 A. Acta Crystallographica Section D. D55, pp. 1822-1826. https://doi.org/10.1107/s0907444999009944

Preliminary X-ray analysis of a new crystal form of the vanadium-dependent bromoperoxidase from Corallina officinalis.
Brindley, A.A., Dalby, A.R., Isupov, M.N. and Littlechild, J.A. 1998. Preliminary X-ray analysis of a new crystal form of the vanadium-dependent bromoperoxidase from Corallina officinalis. Acta Crystallographica Section D: Structural Biology. D54 (Pt 3), pp. 454-457. https://doi.org/10.1107/s0907444997014558

Studies with type I aldolase to understand fructose intolerance and combat parasitic disease.
Dalby, A.R. and Littlechild, J.A. 1996. Studies with type I aldolase to understand fructose intolerance and combat parasitic disease. Journal of Pharmacy and Pharmacology. 48 (2), pp. 214-217. https://doi.org/10.1111/j.2042-7158.1996.tb07126.x

Permalink - https://westminsterresearch.westminster.ac.uk/item/908q5/developing-stochastic-models-for-spatial-inference-bacterial-chemotaxis


Share this

Usage statistics

97 total views
133 total downloads
These values cover views and downloads from WestminsterResearch and are for the period from September 2nd 2018, when this repository was created.