Concurrent resistance and aerobic exercise stimulates both myofibrillar and mitochondrial protein synthesis in sedentary middle-aged men

Donges, C.E., Burd, N.A., Duffield, R., Smith, G.C., West, D.D.W., Short, M.J., Mackenzie, R.W.A., Plank, L.D., Shepherd, P.R., Phillips, S.M. and Edge, J.A. 2012. Concurrent resistance and aerobic exercise stimulates both myofibrillar and mitochondrial protein synthesis in sedentary middle-aged men. Journal of Applied Physiology. 112 (12), pp. 1992-2001. https://doi.org/10.​1152/​japplphysiol.​00166.​2012

TitleConcurrent resistance and aerobic exercise stimulates both myofibrillar and mitochondrial protein synthesis in sedentary middle-aged men
AuthorsDonges, C.E., Burd, N.A., Duffield, R., Smith, G.C., West, D.D.W., Short, M.J., Mackenzie, R.W.A., Plank, L.D., Shepherd, P.R., Phillips, S.M. and Edge, J.A.
Abstract

We determined myofibrillar and mitochondrial protein fractional synthesis rates (FSR), intramuscular signaling protein phosphorylation, and mRNA expression responses after isolated bouts of resistance exercise (RE), aerobic exercise (AE), or in combination [termed concurrent exercise (CE)] in sedentary middle-aged men. Eight subjects (age = 53.3 ± 1.8 yr; body mass index = 29.4 ± 1.4 kg·m2) randomly completed 8 × 8 leg extension repetitions at 70% of one repetition-maximum, 40 min of cycling at 55% peak aerobic power output (AE), or (consecutively) 50% of the RE and AE trials (CE). Biopsies were obtained (during a primed, constant infusion of l-[ring-13C6]phenylalanine) while fasted, and at 1 and 4 h following postexercise ingestion of 20 g of protein. All trials increased mitochondrial FSR above fasted rates (RE = 1.3-fold; AE = 1.5; CE = 1.4; P < 0.05), although only CE (2.2) and RE (1.8) increased myofibrillar FSR (P < 0.05). At 1 h postexercise, phosphorylation of Akt on Ser473 (CE = 7.7; RE = 4.6) and Thr308 (CE = 4.4; RE = 2.9), and PRAS40 on Thr246 (CE = 3.8; AE = 2.5) increased (P < 0.05), with CE greater than AE for Akt Ser473-Thr308 and greater than RE for PRAS40 (P < 0.05). Despite increased phosphorylation of Akt-PRAS40, phosphorylation of mammalian target of rapamycin (Ser2448) remained unchanged (P > 0.05), while rpS6 (Ser235/236) increased only in RE (10.4) (P < 0.05). CE and AE both resulted in increased peroxisome proliferator receptor-γ coactivator 1-α (PGC1α) expression at 1 h (CE = 2.9; AE = 2.8; P < 0.05) and 4 h (CE = 2.6; AE = 2.4) and PGC1β expression at 4 h (CE = 2.1; AE = 2.6; P < 0.05). These data suggest that CE-induced acute stimulation of myofibrillar and mitochondrial FSR, protein signaling, and mRNA expression are equivalent to either isolate mode (RE or AE). These results occurred without an interference effect on muscle protein subfractional synthesis rates, protein signaling, or mRNA expression.

JournalJournal of Applied Physiology
Journal citation112 (12), pp. 1992-2001
ISSN8750-7587
YearJun 2012
PublisherAmerican Physiological Society
Digital Object Identifier (DOI)https://doi.org/10.​1152/​japplphysiol.​00166.​2012
Web address (URL)http://jap.physiology.org/content/early/2012/04/02/japplphysiol.00166.2012
Publication dates
PublishedJun 2012

Related outputs

High intensity exercise decreases IP6K1 muscle content & improves insulin sensitivity in glucose intolerant individuals
Naufahu, J., Elliott, B., Markiv, A., Dunning-Foreman, P., McGrady, M., Howard, D., Watt, P.W. and Mackenzie, R.W.A. 2018. High intensity exercise decreases IP6K1 muscle content & improves insulin sensitivity in glucose intolerant individuals. Journal of Clinical Endocrinology and Metabolism. 103 (4), pp. 1479-1490. https://doi.org/10.1210/jc.2017-02019

Akt/PKB activation and insulin signaling: a novel insulin signaling pathway in the treatment of type 2 diabetes
Mackenzie, R.W.A. and Elliott, B.T. 2014. Akt/PKB activation and insulin signaling: a novel insulin signaling pathway in the treatment of type 2 diabetes. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy. 7, pp. 55-64. https://doi.org/10.2147/DMSO.S48260

Attenuation of plasma annexin A1 in human obesity
Kosicka, A., Cunliffe, A., Mackenzie, R.W.A., Gulrez Zariwala, M., Perretti, M., Flower, R.J. and Renshaw, D. 2013. Attenuation of plasma annexin A1 in human obesity. FASEB Journal. 27 (1), pp. 368-378. https://doi.org/10.1096/fj.12-213728

Partial heat acclimation of athletes with spinal cord lesion
Castle, P.C., Pasan Kularatne, B., Brewer, J., Mauger, A.R., Austen, R.A., Tuttle, J.A., Sculthorpe, N., Mackenzie, R.W.A., Maxwell, N.S. and Webborn, A.D.J. 2013. Partial heat acclimation of athletes with spinal cord lesion. European Journal of Applied Physiology. 113 (1), pp. 109-115. https://doi.org/10.1007/s00421-012-2417-6

Intermittent exercise with and without hypoxia improves insulin sensitivity in individuals with type 2 diabetes
Mackenzie, R.W.A., Maxwell, N.S., Castle, P.C., Elliott, B.T., Brickley, G. and Watt, P.W. 2012. Intermittent exercise with and without hypoxia improves insulin sensitivity in individuals with type 2 diabetes. Journal of Clinical Endocrinology and Metabolism. 97 (4), pp. E546-E555. https://doi.org/10.1210/jc.2011-2829

The central role of myostatin in skeletal muscle and whole body homeostasis
Elliott, B.T., Renshaw, D., Getting, S.J. and Mackenzie, R.W.A. 2012. The central role of myostatin in skeletal muscle and whole body homeostasis. Acta Physiologica. 205 (3), pp. 324-340. https://doi.org/10.1111/j.1748-1716.2012.02423.x

The effect of hypoxia and work intensity on insulin resistance in type 2 diabetes
Mackenzie, R.W.A., Elliott, B.T., Maxwell, N.S., Brickley, G. and Watt, P.W. 2012. The effect of hypoxia and work intensity on insulin resistance in type 2 diabetes. Journal of Clinical Endocrinology and Metabolism. 97 (1), pp. 155-162. https://doi.org/10.1210/jc.2011-1843

Heat acclimation improves intermittent sprinting in the heat but additional pre-cooling offers no further ergogenic effect
Castle, P.C., Mackenzie, R.W.A., Maxwell, N.S., Webborn, A.D.J. and Watt, P.W. 2011. Heat acclimation improves intermittent sprinting in the heat but additional pre-cooling offers no further ergogenic effect. Journal of Sports Sciences. 29 (11), pp. 1125-1134. https://doi.org/10.1080/02640414.2011.583673

Acute hypoxia and exercise improve insulin sensitivity (S(I) (2) *) in individuals with type 2 diabetes
Mackenzie, R.W.A., Maxwell, N.S., Castle, P.C., Brickley, G. and Watt, P.W. 2011. Acute hypoxia and exercise improve insulin sensitivity (S(I) (2) *) in individuals with type 2 diabetes. Diabetes - Metabolism: Research and Reviews. 27 (1), pp. 94-101. https://doi.org/10.1002/dmrr.1156

Acute hypoxia improves insulin sensitivity (SI2*) and β cell function in individuals with Type 2 Diabetes
Mackenzie, R.W.A., Elliott, B.T., Brickley, G. and Watt, P.W. 2010. Acute hypoxia improves insulin sensitivity (SI2*) and β cell function in individuals with Type 2 Diabetes. The Physiological Society. University of Manchester

Influence of hypohydration on intermittent sprint performance in the heat
Maxwell, N.S., Mackenzie, R.W.A. and Bishop, D. 2009. Influence of hypohydration on intermittent sprint performance in the heat. International Journal of Sports Physiology and Performance. 4 (1), pp. 54-67.

Intermittent exercise decreases insulin resistance in the 48 hrs following exercise in individuals with type 2 diabetes
Mackenzie, R.W.A. and Watt, P.W. 2009. Intermittent exercise decreases insulin resistance in the 48 hrs following exercise in individuals with type 2 diabetes. Endocrine Society 91st Annual Meeting. Washington, DC 10 - 13 Jun 2009

Exercise and acute hypoxia improve insulin sensitivity (SI2*) in individuals with type 2 diabetes
Mackenzie, R.W.A. and Watt, P.W. 2009. Exercise and acute hypoxia improve insulin sensitivity (SI2*) in individuals with type 2 diabetes. Society for Endocrinology BES 2009. Harrogate 16 - 19 Mar 2009

Heat acclimation improves intermittent sprint performance in the heat, but additional pre-cooling is not further ergogenic
Castle, P.C., Mackenzie, R.W.A., Maxwell, N.S., Webborn, A.D.J. and Watt, P.W. 2009. Heat acclimation improves intermittent sprint performance in the heat, but additional pre-cooling is not further ergogenic. BASES Annual Conference. Leeds Metropolitan University 01 - 03 Sep 2009

Acute normobaric hypoxia stimulates erythropoietin release
Mackenzie, R.W.A., Watt, P.W. and Maxwell, N.S. 2008. Acute normobaric hypoxia stimulates erythropoietin release. High Altitude Medicine and Biology. 9 (1), pp. 28-37. https://doi.org/10.1089/ham.2007.1043

Acute hypoxia alters glucose tolerance in type 2 diabetes
Mackenzie, R.W.A., Hammond, E. and Watt, P.W. 2007. Acute hypoxia alters glucose tolerance in type 2 diabetes. The Endocrine Society 89th Annual Meeting. Toronto, Canada 02 - 05 Jun 2007

Increased carbon dioxide expiration in recovery from maximal exercise in children with cystic fibrosis
Brickley, G., Adams, A., Mackenzie, R.W.A., Lenton, J. and Seddon, P. 2006. Increased carbon dioxide expiration in recovery from maximal exercise in children with cystic fibrosis. American Thoracic Society International Conference. San Diego 19 - 24 May 2006

Physical activity and fitness in children with Cystic Fibrosis
Adams, A., Mackenzie, R.W.A., Lenton, J., Brickley, G. and Seddon, P. 2006. Physical activity and fitness in children with Cystic Fibrosis. Journal of Cystic Fibrosis. 5 (sup. 1), p. S80.

Physical activity and fitness in children with cystic fibrosis
Adams, A., Lenton, J., Brickley, G., Mackenzie, R.W.A. and Seddon, P. 2006. Physical activity and fitness in children with cystic fibrosis. 29th European Cystic Fibrosis Conference. Copenhagen, Denmark 15 - 18 Jun 2006

Invited Response – Levine, B D & Stray-Gundersen, J (2005). Comments on Point: Counterpoint "Positive effects of intermittent hypoxia (live high:train low) on exercise performance are/are not mediated primarily by augmented red cell volume"
Mackenzie, R.W.A. 2005. Invited Response – Levine, B D & Stray-Gundersen, J (2005). Comments on Point: Counterpoint "Positive effects of intermittent hypoxia (live high:train low) on exercise performance are/are not mediated primarily by augmented red cell volume". Journal of Applied Physiology. 99 (6), pp. 2453-2462. https://doi.org/10.1152/japplphysiol.01157.2005

Permalink - https://westminsterresearch.westminster.ac.uk/item/8z388/concurrent-resistance-and-aerobic-exercise-stimulates-both-myofibrillar-and-mitochondrial-protein-synthesis-in-sedentary-middle-aged-men


Share this

Usage statistics

104 total views
0 total downloads
These values cover views and downloads from WestminsterResearch and are for the period from September 2nd 2018, when this repository was created.