The cortex-based alignment approach to TMS coil positioning

Duecker, F., Frost, M.A., de Graaf, T.A., Graewe, B., Jacobs, C., Goebel, R. and Sack, A.T. 2014. The cortex-based alignment approach to TMS coil positioning. Journal of Cognitive Neuroscience. 26 (10), pp. 2321-2329. https://doi.org/10.1162/jocn_a_00635

TitleThe cortex-based alignment approach to TMS coil positioning
AuthorsDuecker, F., Frost, M.A., de Graaf, T.A., Graewe, B., Jacobs, C., Goebel, R. and Sack, A.T.
Abstract

TMS allows noninvasive manipulation of brain activity in healthy participants and patients. The effectiveness of TMS experiments critically depends on precise TMS coil positioning, which is best for most brain areas when a frameless stereotactic system is used to target activation foci based on individual fMRI data. From a purely scientific perspective, individual fMRI-guided TMS is thus the method of choice to ensure optimal TMS efficiency. Yet, from a more practical perspective, such individual functional data are not always available, and therefore alternative TMS coil positioning approaches are often applied, for example, based on functional group data reported in Talairach coordinates. We here propose a novel method for TMS coil positioning that is based on functional group data, yet only requires individual anatomical data. We used cortex-based alignment (CBA) to transform individual anatomical data to an atlas brain that includes probabilistic group maps of two functional regions (FEF and hMT+/V5). Then, these functional group maps were back-transformed to the individual brain anatomy, preserving functional–anatomical correspondence. As a proof of principle, the resulting CBA-based functional targets in individual brain space were compared with individual FEF and hMT+/V5 hotspots as conventionally localized with individual fMRI data and with targets based on Talairach coordinates as commonly done in TMS research in case only individual anatomical data are available. The CBA-based approach significantly improved localization of functional brain areas compared with traditional Talairach-based targeting. Given the widespread availability of CBA schemes and preexisting functional group data, the proposed procedure is easy to implement and at no additional measurement costs. However, the accuracy of individual fMRI-guided TMS remains unparalleled, and the CBA-based approach should only be the method of choice when individual functional data cannot be obtained or experimental factors argue against it.

JournalJournal of Cognitive Neuroscience
Journal citation26 (10), pp. 2321-2329
ISSN0898-929X
Year2014
PublisherMIT Press
Digital Object Identifier (DOI)https://doi.org/10.1162/jocn_a_00635
Publication dates
PublishedOct 2014

Related outputs

Mental rotation performance in aphantasia [Vision Sciences Society Annual Meeting Abstract]
Pounder, Z., Jacob, J., Jacobs, C., Loveday, C., Towell, T. and Silvanto, J. 2018. Mental rotation performance in aphantasia [Vision Sciences Society Annual Meeting Abstract]. Journal of Vision. 18, p. 1123.

State-dependent TMS reveals representation of affective body movements in the anterior intraparietal cortex
Mazzoni, N., Jacobs, C., Venuti, P., Silvanto, J. and Cattaneo, L. 2017. State-dependent TMS reveals representation of affective body movements in the anterior intraparietal cortex . Journal of Neuroscience. 37 (30), pp. 7231-7239. https://doi.org/10.1523/JNEUROSCI.0913-17.2017

Attention, working memory, and phenomenal experience of WM content: memory levels determined by different types of top-down modulation.
Jacob, J., Jacobs, C. and Silvanto, J. 2015. Attention, working memory, and phenomenal experience of WM content: memory levels determined by different types of top-down modulation. Frontiers in Psychology. 6 1603. https://doi.org/10.3389/fpsyg.2015.01603

How is working memory content consciously experienced? The 'conscious copy' model of WM introspection
Silvanto, J. and Jacobs, C. 2015. How is working memory content consciously experienced? The 'conscious copy' model of WM introspection. Neuroscience & Biobehavioral Reviews. 55, pp. 510-519. https://doi.org/10.1016/j.neubiorev.2015.06.003

Two distinct neural mechanisms in early visual cortex determine subsequent visual processing
Jacobs, C., de Graaf, T.A. and Sack, A.T. 2014. Two distinct neural mechanisms in early visual cortex determine subsequent visual processing. Cortex. 59, pp. 1-11. https://doi.org/10.1016/j.cortex.2014.06.017

The chronometry of visual perception: review of occipital TMS masking studies
de Graaf, T.A., Koivisto, M., Jacobs, C. and Sack, A.T. 2014. The chronometry of visual perception: review of occipital TMS masking studies. Neuroscience & Biobehavioral Reviews. 45, pp. 295-304. https://doi.org/10.1016/j.neubiorev.2014.06.017

Time- and task-dependent non-neural effects of real and sham TMS
Duecker, F., de Graaf, T.A., Jacobs, C. and Sack, A.T. 2013. Time- and task-dependent non-neural effects of real and sham TMS. PLoS ONE. 8 (9) e73813. https://doi.org/10.1371/journal.pone.0073813

Posttraining transcranial magnetic stimulation of striate cortex disrupts consolidation early in visual skill learning
De Weerd, P., Reithler, J., van de Ven, V., Been, M., Jacobs, C. and Sack, A.T. 2012. Posttraining transcranial magnetic stimulation of striate cortex disrupts consolidation early in visual skill learning. The Journal of Neuroscience. 32 (6), pp. 1981-1988. https://doi.org/10.1523/JNEUROSCI.3712-11.2011

The temporal dynamics of early visual cortex involvement in behavioral priming
Jacobs, C., de Graaf, T.A., Goebel, R. and Sack, A.T. 2012. The temporal dynamics of early visual cortex involvement in behavioral priming. PLoS ONE. 7 (11) e48808. https://doi.org/10.1371/journal.pone.0048808

Behavior in oblivion: the neurobiology of subliminal priming
Jacobs, C. and Sack, A.T. 2012. Behavior in oblivion: the neurobiology of subliminal priming. Brain Sciences. 2 (2), pp. 225-241. https://doi.org/10.3390/brainsci2020225

Topographic contribution of early visual cortex to short-term memory consolidation: a transcranial magnetic stimulation study
van de Ven, V., Jacobs, C. and Sack, A.T. 2012. Topographic contribution of early visual cortex to short-term memory consolidation: a transcranial magnetic stimulation study. The Journal of Neuroscience. 32 (1), pp. 4-11. https://doi.org/10.1523/JNEUROSCI.3261-11.2012

Visual awareness suppression by pre-stimulus brain stimulation: a neural effect
Jacobs, C., Goebel, R. and Sack, A.T. 2012. Visual awareness suppression by pre-stimulus brain stimulation: a neural effect. NeuroImage. 59 (1), pp. 616-624. https://doi.org/10.1016/j.neuroimage.2011.07.090

TMS effects on subjective and objective measures of vision: stimulation intensity and pre- versus post-stimulus masking
de Graaf, T.A., Cornelsen, S., Jacobs, C. and Sack, A.T. 2011. TMS effects on subjective and objective measures of vision: stimulation intensity and pre- versus post-stimulus masking. Consciousness and Cognition. 20 (4), pp. 1244-1255. https://doi.org/10.1016/j.concog.2011.04.012

FMRI effective connectivity and TMS chronometry: complementary accounts of causality in the visuospatial judgment network
de Graaf, T.A., Jacobs, C., Roebroeck, A. and Sack, A.T. 2009. FMRI effective connectivity and TMS chronometry: complementary accounts of causality in the visuospatial judgment network. PLoS ONE. 4 (12) e8307. https://doi.org/10.1371/journal.pone.0008307

Dynamic premotor-to-parietal interactions during spatial imagery
Sack, A.T., Jacobs, C., De Martino, F., Staeren, N., Goebel, R. and Formisano, E. 2008. Dynamic premotor-to-parietal interactions during spatial imagery. The Journal of Neuroscience. 28 (34), pp. 8417-8429. https://doi.org/10.1523/JNEUROSCI.2656-08.2008

Permalink - https://westminsterresearch.westminster.ac.uk/item/8y863/the-cortex-based-alignment-approach-to-tms-coil-positioning


Share this

Usage statistics

86 total views
0 total downloads
These values cover views and downloads from WestminsterResearch and are for the period from September 2nd 2018, when this repository was created.