Klebsiella pneumoniae subsp. pneumoniae-bacteriophage combination from the caecal effluent of a healthy woman

Lesley Hoyles¹,²
James Murphy²
Horst Neve³
Jane F. Turton⁴
Jennifer Mahony²
Jeremy D. Sanderson⁵
Glenn R. Gibson⁶
Anne L. McCartney⁶
Douwe van Sinderen²,⁷

¹ Department of Biomedical Sciences, University of Westminster, UK
² School of Microbiology, University College Cork, Ireland
³ Max Rubner – Institut (MRI), Institute of Microbiology and Biotechnology (MBT), Kiel, Germany
⁵ Department of Gastroenterology, Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, UK
⁶ Department of Food and Nutritional Sciences, University of Reading, Whiteknights Campus, Reading, Berkshire, UK
⁷ Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland

This is a copy of the poster presented at the 8th International Yakult Symposium: Probiotics, a protective approach to health – an expert insight into the latest research, Berlin, Germany, 23 April 2015.

Copyright © 2015 The Authors.
Whilst further distribution of specific materials from within this archive is forbidden, you may freely distribute the URL of WestminsterResearch: (http://westminsterresearch.wmin.ac.uk/). In case of abuse or copyright appearing without permission e-mail repository@westminster.ac.uk
Lesley Hoyles1,2 | James Murphy2 | Horst Neve3 | Jane F. Turton4 | Jennifer Mahony2 | Jeremy D. Sanderson2 | Glenn R. Gibson5 | Anne L. McCartney6 | Douwe van Sinderen2,7

text

Introduction

Given their staggering abundance and diversity, coupled to their perceived crucial role in the functioning of ecosystems, it is surprising that virus-like particles (VLPs) and, by extension, bacteriophages remain the most poorly characterized biological entities on Earth. Metagenomic studies on samples from a range of environments and the potential of bacteriophage therapy to treat antibiotic-resistant, clinically relevant bacteria have renewed interest bacteriophages. Virome and classical studies examining VLPs in the faeces of adults and infants have demonstrated that there is a vast diversity and abundance of bacteriophages associated with the human gut microbiota, particularly faeces and the caecum [1–4].

The caecum is a pouch that connects the ileum to the proximal colon, and is considered to be the beginning of the large intestine. The mucosal surface of the human caecum is heavily populated with bacteria, with substantially more biofilm formation in this region of the gastrointestinal tract than the proximal or transverse colon [5]. The biofilm associated with the caecum represents "adherent colonies of microbes growing within an extracellular matrix" [5]. During a study of the microbiota associated with the caecum of patients with irritable bowel syndrome and healthy controls, we isolated and characterized a Klebsiella pneumoniae subsp. pneumoniae--bacteriophage combination from the caecal effluent of a healthy woman.

Methods

Ethical approval to collect caecal effluent from patients was obtained from St Thomas’ Hospital Research Ethics Committee (06/Q0702/74) covering Guy’s and St Thomas’ Hospitals, and transferred by agreement to London Bridge Hospital. The caecal effluent was collected as described previously [4] from a 31-year-old female who showed no evidence of colonic abnormalities or disease as based on a routine colonoscopic examination. A 1-ml aliquot of effluent was diluted (1:1 in)-1 in sterile, anaerobic half-strength peptone water. A dilution series (10−1 to 10−6) was prepared from the homogenate, and aliquots (20 μl) were plated in triplicate on fastidious anaerobic agar (BIOTEC laboratories, Ipswich, UK) containing 5% laked horse blood. Bacteria were incubated anaerobically for 5 days at 37 °C, and then enumerated. Ten colonies were selected randomly and streaked to purity, and identified using 16S RNA gene sequence analysis. One of the five Klebsiella pneumoniae isolates (L4-FAA5) recovered was typed using capsular-type-specific, variable number tandem repeat and virulence gene targets [6].

The remaining neat caecal effluent was processed as described previously [4], and used in a spot assay on tryptone soya agar seeded with L4-FAA5. One plate was selected, and propagated to purity. The ability of the isolated bacteriophage (named KLPN1) to infect clinical K. pneumoniae subsp. pneumoniae strains was tested (Table 1). Morphology of phage KLPN1 was determined by transmission electron microscopy [4]. The whole-genome sequence of phage KLPN1 was determined using pyrosequencing technology on a 454 FLX instrument (Macrogen Inc., Korea). GeneMark (http://exon.gatech.edu/GeneMark/gm.cm) was used to predict ORFs. ORF boundaries were verified and, where required, adjusted by manual inspection of Shine-Delgarno sequences. BLASTP, InterPro (http://www.ebi.ac.uk/Interpro/) and HHpred (http://toolkit.tuebingen.mpg.de/hhpred) were used to assign functionality to genes. The genome sequence of KLPN1 was compared with the gene set of Klebsiella phages (BLASTP), and public virome datasets (BLASTN) available from METAVIR (http://metavir-meb.univ-bpclermont.fr; n = 70, 51,992,208 sequence reads associated with 70 projects from a range of habitats, including human faeces [1–3,7,8]).

Results and Discussion

K. pneumoniae subsp. pneumoniae is a member of the gut microbiota and an important nosocomial and community-acquired opportunistic pathogen, causing pneumonia, and wound, burn, urinary tract and blood infections. There are 79 recognized capsular types of K. pneumoniae subsp. pneumoniae, with K2 strains among those most frequently associated with pyogenic liver abscesses. It has been suggested that the majority of K. pneumoniae-associated liver infections are preceded by colonization of the gastrointestinal tract, and infections arise from bacteria originating in the faecal microbiota [9].

Using caecal effluent recovered from a healthy woman, we have isolated a capsular type K2 rmpA* strain (L4-FAA5) of K. pneumoniae subsp. pneumoniae. Our isolation of a K. pneumoniae strain with virulence traits from the human caecum supports the assertion that the human gut microbiota is a source of potentially infectious K. pneumoniae.

Bacteriophages against K. pneumoniae subsp. pneumoniae L4-FAA5 were present at 2×107 ± 2.65×105 (n=3) pfu/ml caecal effluent (Fig. 1a). An isolated plaque was propagated to purity. Phage KLPN1 was chloroform-resistant and formed clear plaques of 2 mm in diameter within 3 h of spotting on an agar overlay. After prolonged incubation, the area around its plaques developed opaque haloes caused by depolymerase activity, which increased in size over the course of 4 days (Fig. 1b, c). Phage KLPN1 displayed stability to prolonged storage in TSB at 4°C after 6 and 18 months’ storage, titres for the bacteriophage were still 107 pfu/ml, comparable with the original stock. The Siphoviridae bacteriophage presented a rosette-like tail tip (Fig. 1d).

When screened against a panel of clinical isolates of K. pneumoniae subsp. pneumoniae, phage KLPN1 was shown to infect and lyse capsular type K2 strains (Table 1), but did not exhibit depolymerase activity. Its virulence against K2 strains suggests phage KLPN1 has potential clinical applications, and that the gut microbiota is an untapped source of agents for phage therapy.

The genome of KLPN1 was determined to be 49,037 bp (50.5 G+C %) in length, comprising 73 predicted ORFs, of which 23 encoded genes associated with structure, host recognition, and uncharacterized human-gut-microbiome-specific proteins [10]. ORF60 and ORF61 were predicted to encode holin (which destroys the cytoplasmic membrane) and endolysin (which degrades peptidoglycan), respectively. These gene products have antibacterial properties that can be used in phage-associated therapies; further characterization of the proteins encoded by these ORFs is required.

Table 1. K. pneumoniae subsp. pneumoniae clinical isolates against which bacteriophage KLPN1 was screened

<table>
<thead>
<tr>
<th>Isolate</th>
<th>HPMA</th>
<th>L4-FAA5</th>
<th>L4-FAA2</th>
<th>L2-FAA5</th>
<th>L4-FAA2</th>
<th>L4-FAA2</th>
<th>L4-FAA2</th>
<th>L4-FAA2</th>
</tr>
</thead>
<tbody>
<tr>
<td>K. pneumoniae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L4-FAA5</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>L4-FAA2</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>L4-FAA2</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Fig. 2. Genome map of phage KLPN1. The linear genome of KLPN1 depicted in a circularized format. The three circular tracks describe (from inner to outer): GC skew ([G]−[C]/[G]+[C]), with blue peaks indicating a lower than average proportion of G+C content, with blue peaks indicating below-average G+C content; and predicted ORFs and their direction of transcription. The majority of the ORFs were transcribed on the positive strand.

References