Methods for Isolating, Identifying, and Quantifying Anthocyanin Metabolites in Clinical Samples

de Ferrars, R.M., Czank, C., Saha, S., Needs, P.W., Zhang, Q., Raheem, S., Botting, N.P., Kroon, P.A. and Kay, C.D. 2014. Methods for Isolating, Identifying, and Quantifying Anthocyanin Metabolites in Clinical Samples. Analytical Chemistry. 86 (20), pp. 10052-10058. https://doi.org/10.1021/ac500565a

TitleMethods for Isolating, Identifying, and Quantifying Anthocyanin Metabolites in Clinical Samples
TypeJournal article
Authorsde Ferrars, R.M., Czank, C., Saha, S., Needs, P.W., Zhang, Q., Raheem, S., Botting, N.P., Kroon, P.A. and Kay, C.D.
JournalAnalytical Chemistry
Journal citation86 (20), pp. 10052-10058
ISSN0003-2700
Year2014
PublisherAmerican Chemical Society
Digital Object Identifier (DOI)https://doi.org/10.1021/ac500565a
Publication dates
Published14 May 2014

Related outputs

Exploring diverse frontiers: Advancements of bioactive 4-aminoquinoline-based molecular hybrids in targeted therapeutics and beyond
Ravindar, L., Hasbullah, S.A., Rakesh, K.P., Raheem, S., Agustar, H.K., Ismail, N., Ling, L.Y. and Hassan, N.I. 2023. Exploring diverse frontiers: Advancements of bioactive 4-aminoquinoline-based molecular hybrids in targeted therapeutics and beyond. European Journal of Medicinal Chemistry. 264 116043. https://doi.org/10.1016/j.ejmech.2023.116043

Fatty acid metabolism of Mycobacterium tuberculosis: a double-edged sword
Gaspar Quinonez, C., Lee, J.J., Lim, J., Odell, M., Lawson, C.P., Anyogu, A., Raheem, S. and Eoh, H. 2022. Fatty acid metabolism of Mycobacterium tuberculosis: a double-edged sword. mBio. 13 (1) e03559-21. https://doi.org/10.15698/mic2022.05.777

The Role of Fatty Acid Metabolism in Drug Tolerance of Mycobacterium tuberculosis
Gaspar Quinonez, C., Lee, J.J., Lim, J., Odell, M., Lawson, C.P., Anyogu, A., Raheem, S. and Eoh, H. 2022. The Role of Fatty Acid Metabolism in Drug Tolerance of Mycobacterium tuberculosis. mBio. 13 (1), pp. e03559-21. https://doi.org/10.1128/mbio.03559-21

Glutamate mediated metabolic neutralization mitigates propionate toxicity in intracellular Mycobacterium tuberculosis
Lee, J.J., Lim, J., Gao, S., Lawson, C.P., Odell, M., Raheem, S., Woo, J., Kang, S-H., Kang, S-S., Jeon, B-Y. and Eoh, H. 2018. Glutamate mediated metabolic neutralization mitigates propionate toxicity in intracellular Mycobacterium tuberculosis. Scientific Reports. 8 8506. https://doi.org/10.1038/s41598-018-26950-z

Signatures of anthocyanin metabolites identified in humans inhibit biomarkers of vascular inflammation in human endothelial cells
Warner, E.F., Smith, M.J., Zhang, Q., Raheem, S., O’Hagan, D., O'Connell, M.A. and Kay, C.D. 2017. Signatures of anthocyanin metabolites identified in humans inhibit biomarkers of vascular inflammation in human endothelial cells. Molecular Nutrition & Food Research. 61 (9) 1700053. https://doi.org/10.1002/mnfr.201700053

Influence of LAR and VAR on Para-Aminopyridine Antimalarials Targetting Haematin in Chloroquine-Resistance
Warhurst, D., Craig, J.C. and Raheem, S. 2016. Influence of LAR and VAR on Para-Aminopyridine Antimalarials Targetting Haematin in Chloroquine-Resistance. PLoS ONE. 11 (8) e0160091. https://doi.org/10.1371/journal.pone.0160091

Common Phenolic Metabolites of Flavonoids, but Not Their Unmetabolized Precursors, Reduce the Secretion of Vascular Cellular Adhesion Molecules by Human Endothelial Cells
Warner, E.F., Zhang, Q., Raheem, S., O’Hagan, D., O’Connell, M.A. and Kay, C.D. 2016. Common Phenolic Metabolites of Flavonoids, but Not Their Unmetabolized Precursors, Reduce the Secretion of Vascular Cellular Adhesion Molecules by Human Endothelial Cells. Journal of Nutrition. 146 (3), pp. 465-473. https://doi.org/10.3945/jn.115.217943

Effects of Fluconazole on the Metabolomic Profile of Candida albicans
Katragkou, A., Alexander, E.L., Eoh, H., Raheem, S., Roilides, E. and Walsh, T.J. 2016. Effects of Fluconazole on the Metabolomic Profile of Candida albicans. Journal of Antimicrobial Chemotherapy. 71 (3), pp. 635-640. https://doi.org/10.1093/jac/dkv381

Flavonoid metabolites reduce tumor necrosis factor-α secretion to a greater extent than their precursor compounds in human THP-1 monocytes.
di Gesso, J.L., Kerr, J.S., Zhang, Q., Raheem, S., Yalamanchili, S.K., O’Hagan, D., Kay, C.D. and O'Connell, M.A. 2015. Flavonoid metabolites reduce tumor necrosis factor-α secretion to a greater extent than their precursor compounds in human THP-1 monocytes. Molecular Nutrition & Food Research. 59 (6), pp. 1143-1154. https://doi.org/10.1002/mnfr.201400799

Anthocyanins and their physiologically relevant metabolites alter the expression of IL-6 and VCAM-1 in CD40L and oxidized LDL challenged vascular endothelial cells
Amin, H.P., Czank, C., Raheem, S., Zhang, Q., Botting, N.P., Cassidy, A. and Kay, C.D. 2015. Anthocyanins and their physiologically relevant metabolites alter the expression of IL-6 and VCAM-1 in CD40L and oxidized LDL challenged vascular endothelial cells. Molecular Nutrition & Food Research. 59 (6), pp. 1095-1106. https://doi.org/10.1002/mnfr.201400803

Flavonoid metabolism: the synthesis of phenolic glucuronides and sulfates as candidate metabolites for bioactivity studies of dietary flavonoids
Zhang, Q., Raheem, S., Botting, N.P., Slawin, A.M.Z., Kay, C.D. and O’Hagan, D. 2012. Flavonoid metabolism: the synthesis of phenolic glucuronides and sulfates as candidate metabolites for bioactivity studies of dietary flavonoids. Tetrahedron. 68, pp. 4194-4201. https://doi.org/10.1016/j.tet.2012.03.100

Total synthesis of 3,5-O-dicaffeoylquinic acid and its derivatives
Raheem, S., Botting, Nigel P., Williamson, G. and Barron, D. 2011. Total synthesis of 3,5-O-dicaffeoylquinic acid and its derivatives. Tetrahedron Letters. 52 (52), p. 7175. https://doi.org/10.1016/j.tetlet.2011.10.127

Permalink - https://westminsterresearch.westminster.ac.uk/item/9vv48/methods-for-isolating-identifying-and-quantifying-anthocyanin-metabolites-in-clinical-samples


Share this

Usage statistics

109 total views
0 total downloads
These values cover views and downloads from WestminsterResearch and are for the period from September 2nd 2018, when this repository was created.