WestminsterResearch will not be accepting deposits until 9th March 2015. This is to allow for a system upgrade and server migration.

Soft computing based techniques for short-term load forecasting

Kodogiannis, Vassilis and Anagnostakis, E.M (2002) Soft computing based techniques for short-term load forecasting. Fuzzy Sets and Systems, 128 (3). pp. 413-426. ISSN 0165-0114

Full text not available from this repository.

Official URL: http://dx.doi.org/10.1016/S0165-0114(01)00076-8


Neural networks are currently finding practical applications, ranging from 'soft' regulatory control in consumer products to accurate modelling of non-linear systems. This paper presents the development of improved neural networks based short-term electric load forecasting models for the power system of the Greek Island of Crete. Several approaches including radial basis function networks, dynamic neural networks have been considered. In addition, a novel approach, based on neural-fuzzy approach has been proposed and discussed in this paper. Their performances are evaluated through a simulation study, using metered data provided by the Greek Public Power Corporation. The results indicate that the load forecasting models developed provide more accurate forecasts compared to the conventional backpropagation network forecasting models. Finally, the embedding of the new model capability in a modular forecasting system is presented.

Item Type:Article
Uncontrolled Keywords:Short-term load forecasting, Neural networks, Fuzzy-neural-type networks, Radial basis functions, Dynamic neural networks
Research Community:University of Westminster > Electronics and Computer Science, School of
ID Code:2156
Deposited On:26 Jun 2006
Last Modified:14 Oct 2009 15:36

Repository Staff Only: item control page