Acute doxorubicin (adriamycin) dosage does not reduce cardiac protein synthesis in vivo, but decreases diaminopeptidase I and proline endopeptidase activities

Zima, Tomas, Tesar, Vladimir, Mantle, David, Koll, Michael, Patel, Vinood B., Richardson, Peter and Preedy, Victor R. (2001) Acute doxorubicin (adriamycin) dosage does not reduce cardiac protein synthesis in vivo, but decreases diaminopeptidase I and proline endopeptidase activities. Experimental and Molecular Pathology, 70 (2). pp. 154-161. ISSN 0014-4800

Full text not available from this repository.
Official URL:


Anthracycline antibiotics are effective anticancer agents but their use is limited due to unwanted adverse side effects. The toxic effects of doxorubicin (adriamycin) include the development of defined cardiac lesions leading to cardiomyopathy in some patients. This has been reported to be due to reductions in cardiac protein synthesis. However, virtually all of these previous studies have failed to consider the specific radioactivity of the precursor pool in their measurements or have carried out their studies in vitro. To further resolve the above we measured fractional rates of cardiac protein synthesis using the â??flooding doseâ? method in rats treated with adriamycin (5 mg/kg body wt). Controls were identically treated and injected with saline. At 2.5 or 24 h after adriamycin injection, rates of protein synthesis were measured with a flooding dose of -[4-3H]phenylalanine. Measurements included free (Si) and protein-bound (Sb) phenylalanine-specific radioactivities, the protein synthetic capacity (RNA/protein ratio; Cs), the fractional rates of protein synthesis calculated from the ratio Sb/Si, and the protein synthetic efficiency calculated from the ratio ks/Cs. Complementary analyses included assays of lysosomal (cathepsins B, D, H, and L and diaminopeptidases I and II) and cytoplasmic proteases (alanyl aminopeptidase, arginyl aminopeptidase, leucyl aminopeptidase, diaminopeptidase IV, tripeptidyl aminopeptidase, and proline endopepti dase). These enzymes constitute the most active proteases in this tissue and represent an index of protein degradation capacity in cardiac muscle. The results showed that in 2.5-h dosed rats, adriamycin had no effect on Si, Sb, Cs, ks, or kRNA (P > 0.05, not significant (NS) in all instances). In 2.5-h dosed rats, levels of diaminopeptidase I activity were reduced (P < 0.05), whereas the activities of other proteases were not significantly altered (NS in all instances). In 24-h dosed rats, adriamycin reduced cardiac Sb (P < 0.001), which would normally be interpreted as a reduction in protein synthesis. However, Si was also decreased in 24-h adriamycin-injected rats (P < 0.025%). Cs was not changed (NS). Consequently, the calculated ks and kRNA values were not significantly affected in 24-h adriamycin-dosed rats (NS). There were also significant reductions in proline endopeptidase activities in rats exposed for 24 h to adriamycin. The activities of other proteases were not significantly affected at this time point (NS in all instances). In conclusion, adriamycin reduces amino acid labeling of cardiac pro teins, an effect that is a consequence of altered free phenylalanine-specific radioactivities. There was some evidence of limited altered intracellular proteolysis.

Item Type: Article
Additional Information: Online ISSN 1096-0945
Uncontrolled Keywords: Heart, protein synthesis, adriamycin, cytotoxicity
Subjects: University of Westminster > Science and Technology > Life Sciences, School of (No longer in use)
Depositing User: Users 4 not found.
Date Deposited: 17 Aug 2005
Last Modified: 07 Jun 2010 11:49

Actions (login required)

Edit Item (Repository staff only) Edit Item (Repository staff only)