Evans, David J. and Megson, Graham M. (1988) *Systolic array for the quotient difference algorithm.* Computers and Digital techniques, IEE Proceedings E, 135 (1). pp. 60-66. ISSN 1350-2387

Full text not available from this repository.

Official URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumbe...

## Abstract

The authors consider the problem of producing all the roots of a polynomial p(x)=a0xn+a1xn-1+. . .+an (where all the roots are distinct) by an iterative systolic array. Two basic arrays are considered, one where the position of the roots remain stationary and another where they are non-stationary. The former scheme requires O(n) basic cells, the latter O(z) cells with z(>0) a suitably chosen constant determining the number of root approximations on a single pass through the array. Finally an area efficient systolic ring is discussed requiring O(n/4) cells to compute an arbitrary number of root approximations.

Item Type: | Article |
---|---|

Uncontrolled Keywords: | Approximation theory, cellular arrays, polynomials, area efficient systolic ring, iterative systolic array quotient difference algorithm, root approximations, roots of a polynomial |

Research Community: | University of Westminster > Electronics and Computer Science, School of |

ID Code: | 5696 |

Deposited On: | 27 Jan 2009 10:34 |

Last Modified: | 19 Oct 2009 15:42 |

Repository Staff Only: item control page