Biosynthesis of polyhydroxyalkanoates, their novel blends and composites for biomedical applications

Basnett, P. 2014. Biosynthesis of polyhydroxyalkanoates, their novel blends and composites for biomedical applications. PhD thesis University of Westminster Faculty of Science and Technology https://doi.org/10.34737/8y9yx

TitleBiosynthesis of polyhydroxyalkanoates, their novel blends and composites for biomedical applications
TypePhD thesis
AuthorsBasnett, P.
Abstract

Polyhydroxyalkanoates (PHAs) are a family of polyhydroxyesters of 3-, 4-, 5- and 6- hydroxyalkanoic acids produced by bacterial fermentation in a nutrient limiting conditions with excess carbon. They can be produced easily using renewable carbon sources. They are biodegradable and biocompatible in nature. Their physical properties are highly tailorable and a range of desired properties can be achieved based on the type of application. Owing to these properties, there has been a considerable interest in the commercial exploitation of PHAs, particularly for biomedical applications.

The main aim of this research project was to produce MCL-PHAs from Pseudomonas mendocina and use them for biomedical applications. In this study, an economical production of MCL-PHAs using renewable and cheap carbon sources such as sugarcane molasses, biodiesel waste and pure glycerol was carried out. Maximum PHA yield of 43.2% dcw was obtained in the media containing biodiesel waste. The results demonstrated the successful utilisation of these cheap carbon sources by P. mendocina for the economical production of MCL-PHAs.

One of the main objectives of this project was to utilize the PHAs produced for biomedical applications. Multifunctional novel 2D P(3HO)/bacterial cellulose composite films were developed for their potential use in tissue engineering applications. Chemically modified bacterial cellulose microcrystals were used as the reinforcing agent to improve the properties of P(3HO). Mechanical properties such as the Young’s modulus and tensile strength values of the P(3HO)/bacterial cellulose composite films were significantly higher in comparison to the neat P(3HO) film. Also, the composite film had a rougher and more hydrophilic surface compared to the neat P(3HO) film. It is known from literature that surface roughness and hydrophilicity affects protein adsorption on the surface of the biomaterial. Protein adsorption, in turn, plays an important role in determining the biocompatibility of a material being used for medical applications (Das et al., 2007). In this study, protein adsorption was higher in the P(3HO)/25% bacterial cellulose composite film compared to the neat P(3HO) film. In vitro biocompatibility studies using Human microvascular endothelial cells (HMEC-1) was carried out. Both neat and composite films were able to support the proliferation of HMEC-1 cells. However, the biocompatibility of the P(3HO)/25% bacterial cellulose composite films had increased. The cell proliferation significantly higher on the P(3HO)/25%

bacterial cellulose composite film as compared to the neat P(3HO) film on day 7.

In addition, multifunctional 2D P(3HO)/P(3HB) blend films with varying percentages of P(3HO) and P(3HB) were developed and assessed for their suitability in the development of biodegradable stents. Mechanical, thermal and microstructural properties of the P(3HO)/P(3HB) blends were characterised. The results highlighted the role of P(3HB) in enhancing the mechanical properties and thermal stability of the blend films compared to the neat P(3HO) films. However, the results suggested that the mechanical properties of the P(3HO)/P(3HB) had to be further improved to meet the desired values required for the development of a biodegradable stent. The overall protein adsorption and % cell viability was significantly higher in the blend films compared to the neat P(3HO) film. Hydrolytic degradation was faster in the blend films and the degradation rate could potentially be tailored to achieve the optimum rate required for a particular medical application.

From the literature, it is known that the surface topography determines the compatibility of a biomaterial by governing important processes such as wettability, protein adsorption, cell adhesion and proliferation (Duncan et al., 2007). In this part of the study, P(3HO)/P(3HB) 50:50 blend films were micropatterned using the laser micropatterning technique to improve their biocompatibility. The results demonstrated an increase in hydrophilicity and protein adsorption on the micropatterned blend films compared to the plain P(3HO)/P(3HB) 50:50 blend films. Cell attachment, proliferation and alignment was significantly higher on the micropatterned blend films compared to the P(3HO)/P(3HB) 50:50 blend films which was a desirable outcome.

Furthermore, an investigation of the P(3HO)/P(3HB) 50:50 2D films as the base material for the development of a drug eluting biodegradable stent was carried out by incorporating aspirin within the film. The percentage viability of the HMEC-1 cells was higher in the blend films with aspirin compared to the blend films without aspirin indicating an increased biocompatibility of the P(3HO)/P(3HB) 50:50 blend film containing aspirin. Controlled release of aspirin was observed without any burst release and 96.6% release was achieved within 25 days, ideal for the development of biodegradable drug eluting stents.

Finally, a drug delivery system for the controlled delivery of aspirin was successfully developed. In this part of the study, 2D solvent cast films and microspheres (average size=30 μm) were developed using P(3HB). Drug release pattern from P(3HB) films as well as P(3HB) microspheres were monitored. The results demonstrated that the P(3HB) films with aspirin were suitable for sustained long term drug release whereas P(3HB) microspheres with aspirin were more suitable for fast release.

In conclusion, this project has led to the successful production of PHAs, and their utilisation in the development of a range of composites, blends and drug elution structures with promising potential medical applications.

Year2014
File
PublisherUniversity of Westminster
Publication dates
Published2014
Digital Object Identifier (DOI)https://doi.org/10.34737/8y9yx

Related outputs

The Cavendish Living lab - a multidisciplinary, vertically integrated project focused on sustainability
Basnett, P., Percy, L., Sengupta, D. and Smith, C.L. 2023. The Cavendish Living lab - a multidisciplinary, vertically integrated project focused on sustainability. Westminster Learning and Teaching Symposium 2023: Better Than the Real Thing? Exploring Education Futures at the University of Westminster. University of Westminster 04 Sep 2023

Aligned Polyhydroxyalkanoate Blend Electrospun Fibers as Intraluminal Guidance Scaffolds for Peripheral Nerve Repair
Taylor, C., Behbehani, Mehri, Glen, Adam, Basnett, Pooja, Gregory, D., Lukasiewicz, Barbara B., Nigmatullin, R., Claeyssens, F., Roy, Ipsita and Haycock, John W. 2023. Aligned Polyhydroxyalkanoate Blend Electrospun Fibers as Intraluminal Guidance Scaffolds for Peripheral Nerve Repair. ACS Biomaterials Science & Engineering. 9 (3), pp. 1472-1485. https://doi.org/10.1021/acsbiomaterials.2c00964

Enhanced production of biobased, biodegradable, Poly(3-hydroxybutyrate) using an unexplored marine bacterium Pseudohalocynthiibacter aestuariivivens, isolated from highly polluted coastal environment.
Esposito, Fortunato Palma, Vecchiato, Vittoria, Buonocore, Carmine, Tedesco, Pietro, Noble, Brendon, Basnett, Pooja and de Pascale, Donatella 2023. Enhanced production of biobased, biodegradable, Poly(3-hydroxybutyrate) using an unexplored marine bacterium Pseudohalocynthiibacter aestuariivivens, isolated from highly polluted coastal environment. Bioresource Technology. 368, p. 128287. https://doi.org/10.1016/j.biortech.2022.128287

3D Disease Modelling of Hard and Soft Cancer Using PHA-Based Scaffolds
Tomar, A., Uysal-Onganer, P., Basnett, P., Pati, U. and Roy, I. 2022. 3D Disease Modelling of Hard and Soft Cancer Using PHA-Based Scaffolds. Cancers. 14 (14) e3549. https://doi.org/10.3390/cancers14143549

Controlled Delivery of Pan-PAD-Inhibitor Cl-Amidine Using Poly(3-Hydroxybutyrate) Microspheres.
Ahmed, D., Puthussery, Hima, Basnett, Pooja, Knowles, J., Lange, S. and Roy, I. 2021. Controlled Delivery of Pan-PAD-Inhibitor Cl-Amidine Using Poly(3-Hydroxybutyrate) Microspheres. International Journal of Molecular Sciences. 22 (23) 12852. https://doi.org/10.3390/ijms222312852

Controlled Delivery of Pan-PAD-Inhibitor Cl-Amidine Using Poly(3-Hydroxybutyrate) Microspheres
Ahmed, D., Puthussery, H., Basnett, P., Knowles, J., Lange, S. and Roy, I. 2021. Controlled Delivery of Pan-PAD-Inhibitor Cl-Amidine Using Poly(3-Hydroxybutyrate) Microspheres. International Journal of Molecular Sciences. 22 (23) e12852. https://doi.org/10.3390/ijms222312852

Silver Nanoparticle-Coated Polyhydroxyalkanoate Based Electrospun Fibers for Wound Dressing Applications.
Kalaoglu-Altan, Ozlem Ipek, Baskan, Havva, Meireman, Timo, Basnett, Pooja, Azimi, Bahareh, Fusco, A., Funel, N., Donnarumma, G., Lazzeri, A., Roy, I., Danti, S. and De Clerck, K. 2021. Silver Nanoparticle-Coated Polyhydroxyalkanoate Based Electrospun Fibers for Wound Dressing Applications. Materials. 14 (17) 4907. https://doi.org/10.3390/ma14174907

Harnessing Polyhydroxyalkanoates and Pressurized Gyration for Hard and Soft Tissue Engineering
Basnett, P., Matharu, R.K., Taylor, C.S., Illangakoon, U., Dawson, J.I., Kanczler, J.M., Behbehani, M., Humphrey, E., Majid, Q., Lukasiewicz, B., Nigmatullin, R., Haseltine, P., Oreffo, R.O.C., Haycock, J.W., Terracciano, C., Harding, S.E., Edirisinghe, M. and Roy, I. 2021. Harnessing Polyhydroxyalkanoates and Pressurized Gyration for Hard and Soft Tissue Engineering. ACS Applied Materials & Interfaces. 13 (28), p. 32624–32639. https://doi.org/10.1021/acsami.0c19689

Preclinical study of peripheral nerve regeneration using nerve guidance conduits based on polyhydroxyalkanaotes
Lizarraga Valderrama, L., Ronchi, Giulia, Nigmatullin, Rinat, Fregnan, Federica, Basnett, Pooja, Paxinou, Alexandra, Geuna, Stefano and Roy, I. 2021. Preclinical study of peripheral nerve regeneration using nerve guidance conduits based on polyhydroxyalkanaotes. Bioengineering & Translational Medicine. 6 (3) e10223. https://doi.org/10.1002/btm2.10223

Bioresorbable and Mechanically Optimized Nerve Guidance Conduit Based on a Naturally Derived Medium Chain Length Polyhydroxyalkanoate and Poly(ε-Caprolactone) Blend
Mendibil, Xabier, González-Pérez, Francisco, Bazan, Xabier, Díez-Ahedo, Ruth, Quintana, Iban, Rodríguez, Francisco Javier, Basnett, Pooja, Nigmatullin, Rinat, Lukasiewicz, Barbara, Roy, Ipsita, Taylor, Caroline S., Glen, Adam, Claeyssens, F., Haycock, John W., Schaafsma, Wandert, González, Eva, Castro, Begoña, Duffy, Patrick and Merino, S. 2021. Bioresorbable and Mechanically Optimized Nerve Guidance Conduit Based on a Naturally Derived Medium Chain Length Polyhydroxyalkanoate and Poly(ε-Caprolactone) Blend. ACS Biomaterials Science & Engineering. 7 (2), pp. 672-689. https://doi.org/10.1021/acsbiomaterials.0c01476

Antibacterial Composite Materials Based on the Combination of Polyhydroxyalkanoates With Selenium and Strontium Co-substituted Hydroxyapatite for Bone Regeneration
Marcello, Elena, Maqbool, Muhammad, Nigmatullin, Rinat, Cresswell, Mark, Jackson, Philip R., Basnett, Pooja, Knowles, Jonathan C., Boccaccini, Aldo R. and Roy, I. 2021. Antibacterial Composite Materials Based on the Combination of Polyhydroxyalkanoates With Selenium and Strontium Co-substituted Hydroxyapatite for Bone Regeneration. Frontiers in Bioengineering and Biotechnology. 9 647007. https://doi.org/10.3389/fbioe.2021.647007

Natural Biomaterials for Cardiac Tissue Engineering: A Highly Biocompatible Solution
Majid, Qasim A., Fricker, Annabelle T. R., Gregory, David A., Davidenko, Natalia, Hernandez Cruz, Olivia, Jabbour, Richard J., Owen, Thomas J., Basnett, Pooja, Lukasiewicz, Barbara, Stevens, Molly, Best, Serena, Cameron, Ruth, Sinha, Sanjay, Harding, Sian E. and Roy, Ipsita 2020. Natural Biomaterials for Cardiac Tissue Engineering: A Highly Biocompatible Solution. Frontiers in Cardiovascular Medicine. 7 554597. https://doi.org/10.3389/fcvm.2020.554597

Chemical Modification of Bacterial Cellulose for the Development of an Antibacterial Wound Dressing
Orlando, I., Basnett, P., Nigmatullin, R., Wang, W., Knowles, J. and Roy, I. 2020. Chemical Modification of Bacterial Cellulose for the Development of an Antibacterial Wound Dressing. Frontiers in Bioengineering and Biotechnology. 8 557885. https://doi.org/10.3389/fbioe.2020.557885

Electrosprayed Chitin Nanofibril/Electrospun Polyhydroxyalkanoate Fiber Mesh as Functional Nonwoven for Skin Application
Azimi, Bahareh, Thomas, Lily, Fusco, A., Kalaoglu-Altan, Ozlem Ipek, Basnett, P., Cinelli, P., De Clerck, Karen, Roy, I., Donnarumma, G., Coltelli, M., Danti, S. and Lazzeri, A. 2020. Electrosprayed Chitin Nanofibril/Electrospun Polyhydroxyalkanoate Fiber Mesh as Functional Nonwoven for Skin Application. Journal of Functional Biomaterials. 11 (3), p. e62. https://doi.org/10.3390/jfb11030062

Toward a Closed Loop, Integrated Biocompatible Biopolymer Wound Dressing Patch for Detection and Prevention of Chronic Wound Infections
Ward, A., Dubey, P., Basnett, P., Lika, G., Newman, G., Corrigan, D., Russell, C., Kim, J., Chakrabarty, S., Connolly, P. and Roy, I. 2020. Toward a Closed Loop, Integrated Biocompatible Biopolymer Wound Dressing Patch for Detection and Prevention of Chronic Wound Infections. Frontiers in Bioengineering and Biotechnology. 8 1039. https://doi.org/10.3389/fbioe.2020.01039

Cytocompatibility Evaluation of a Novel Series of PEG-Functionalized Lactide-Caprolactone Copolymer Biomaterials for Cardiovascular Applications
Pacharra, S., McMahon, S., Duffy, P., Basnett, P., Yu, W., Seisel, S., Stervbo, U., Babel, N., Roy, I., Viebahn, R., Wang, W. and Salber, J. 2020. Cytocompatibility Evaluation of a Novel Series of PEG-Functionalized Lactide-Caprolactone Copolymer Biomaterials for Cardiovascular Applications. Frontiers in Bioengineering and Biotechnology. 8 991. https://doi.org/10.3389/fbioe.2020.00991

Comparison of the Influence of 45S5 and Cu-Containing 45S5 Bioactive Glass (BG) on the Biological Properties of Novel Polyhydroxyalkanoate (PHA)/BG Composites
Schuhladen, K., Lukasiewicz, B., Basnett, P., Roy, I. and Boccaccini, A.R. 2020. Comparison of the Influence of 45S5 and Cu-Containing 45S5 Bioactive Glass (BG) on the Biological Properties of Novel Polyhydroxyalkanoate (PHA)/BG Composites. Materials. 13 (11) 2607. https://doi.org/10.3390/ma13112607

Antimicrobial Materials with Lime Oil and a Poly (3-hydroxyalkanoate) Produced via Valorisation of Sugar Cane Molasses
Basnett, P., Marcello, E., Lukasiewicz, B., Nigmatullin, R., Paxinou, A., Ahmad, M.A., Gurumayum , B. and Roy, I. 2020. Antimicrobial Materials with Lime Oil and a Poly (3-hydroxyalkanoate) Produced via Valorisation of Sugar Cane Molasses. Journal of Functional Biomaterials. 11 (2) 24. https://doi.org/10.3390/jfb11020024

Picosecond Laser Ablation of Polyhydroxyalkanoates (PHAs): Comparative Study of Neat and Blended Material Response
Ortiz, R, Basnett, P., Roy, I. and Quintana, I. 2019. Picosecond Laser Ablation of Polyhydroxyalkanoates (PHAs): Comparative Study of Neat and Blended Material Response. e-Polymers. 12 (1) 127. https://doi.org/10.3390/polym12010127

Esterase Cleavable 2D Assemblies of Magnetic Iron Oxide Nanocubes: Exploiting Enzymatic Polymer Disassembling to Improve Magnetic Hyperthermia Heat Losses
Avugadda, S.K., Materia, M.E., Nigmatullin, R., Cabrera, D., Marotta, R., Cabada, T.F., Marcello, E., Nitti, S., Artés-Ibañez, E.J., Basnett, P., Wilhelm, C., Teran, F.J., Roy, I. and Pellegrino, T. 2019. Esterase Cleavable 2D Assemblies of Magnetic Iron Oxide Nanocubes: Exploiting Enzymatic Polymer Disassembling to Improve Magnetic Hyperthermia Heat Losses. Chemistry of Materials. 31 (15), pp. 5450-5463. https://doi.org/10.1021/acs.chemmater.9b00728

Biosynthesis and characterization of a novel, biocompatible medium chain length polyhydroxyalkanoate by Pseudomonas mendocina CH50 using coconut oil as the carbon source
Basnett, P., Marcello, E., Lukasiewicz, B., Panchal, B., Nigmatullin, R., Knowles, J.C. and Roy, I. 2018. Biosynthesis and characterization of a novel, biocompatible medium chain length polyhydroxyalkanoate by Pseudomonas mendocina CH50 using coconut oil as the carbon source. Journal of Materials Science: Materials in Medicine. 29, p. 179 179. https://doi.org/10.1007/s10856-018-6183-9

In Vivo Tracking and 1H/19F Magnetic Resonance Imaging of Biodegradable Polyhydroxyalkanoate / Polycaprolactone Blend Scaffolds Seeded with Labeled Cardiac Stem Cells
Constantinides, C., Basnett, P., Lukasiewicz, B., Carnicer, R., Swider, E., Majid, Q.A., Srinivas, M., Carr, C.A. and Roy, I. 2018. In Vivo Tracking and 1H/19F Magnetic Resonance Imaging of Biodegradable Polyhydroxyalkanoate / Polycaprolactone Blend Scaffolds Seeded with Labeled Cardiac Stem Cells. ACS Applied Materials and Interfaces. 10 (30), p. 25056–25068. https://doi.org/10.1021/acsami.8b06096

Binary Polyhydroxyalkanoate Systems for Soft Tissue Engineering
Lukasiewicz, B., Basnett, P., Nigmatullin, R., Matharu, R., Knowles, J.C. and Roy, I. 2018. Binary Polyhydroxyalkanoate Systems for Soft Tissue Engineering. Acta Biomaterialia. 71, pp. 225-234. https://doi.org/10.1016/j.actbio.2018.02.027

Poly(3-hydroxyoctanoate), a promising new material for cardiac tissue engineering
Bagdadi, A., Safari, M., Dubey, P., Basnett, P., Sofokleous P., Humphrey E, Locke, I.C., Edirisinghe M., Terracciano C., Boccaccini, A.R., Knowles, J.C., Harding, S. and Roy, I. 2018. Poly(3-hydroxyoctanoate), a promising new material for cardiac tissue engineering. Journal of Tissue Engineering and Regenerative Medicine. 12 (1), pp. E495-E512. https://doi.org/10.1002/term.2318

Science and Principles of Biodegradable and Bioresorbable Medical Polymers
Basnett, P., Ravi, S. and Roy, I. 2017. Science and Principles of Biodegradable and Bioresorbable Medical Polymers. in: Xiang Zhang (ed.) Science and Principles of Biodegradable and Bioresorbable Medical Polymers: Materials and Properties Woodhead Publishing. pp. 257-277

Production of a novel medium chain length Poly(3-hydroxyalkanoate) using unprocessed biodiesel waste and its evaluation as a tissue engineering scaffold
Basnett, P., Lukasiewicz, B., Marcello, E., Kaur, H., Knowles, J.C. and Roy, I. 2017. Production of a novel medium chain length Poly(3-hydroxyalkanoate) using unprocessed biodiesel waste and its evaluation as a tissue engineering scaffold. Microbial Biotechnology. 10 (6), pp. 1384-1399. https://doi.org/10.1111/1751-7915.12782

Aspirin-loaded P(3HO)/P(3HB) blend films: potential materials for biodegradable drug-eluting stents
Basnett, P., Ching, K.Y., Stolz, M., Knowles, J.C., Boccaccini, A.R., Smith, C.L., Locke, I.C. and Roy, I. 2013. Aspirin-loaded P(3HO)/P(3HB) blend films: potential materials for biodegradable drug-eluting stents. Bioinspired, Biomimetic and Nanobiomaterials. 2 (3), pp. 141-153. https://doi.org/10.1680/bbn.13.00009

Novel Poly(3-hydroxyoctanoate)/Poly(3-hydroxybutyrate) blends for medical applications
Basnett, P., Ching, K.Y., Stolz, M., Knowles, J.C., Boccaccini, A.R., Smith, C.L., Locke, I.C., Keshavarz, T. and Roy, I. 2013. Novel Poly(3-hydroxyoctanoate)/Poly(3-hydroxybutyrate) blends for medical applications. Reactive and Functional Polymers. 73 (10), pp. 1340-1348. https://doi.org/10.1016/j.reactfunctpolym.2013.03.019

Novel biodegradable and biocompatible poly(3-hydroxyoctanoate)/bacterial cellulose composites
Basnett, P., Knowles, J.C., Pishbin, F., Smith, C.L., Keshavarz, T., Boccaccini, A.R. and Roy, I. 2012. Novel biodegradable and biocompatible poly(3-hydroxyoctanoate)/bacterial cellulose composites. Advanced Engineering Materials. 14 (6), pp. B330-B343. https://doi.org/10.1002/adem.201180076

Production of polyhydroxyalkanoates and their medical applications
Roy, I., Akaraonye, E., Francis, L., Rai, R., Basnett, P. and Keshavarz, T. 2011. Production of polyhydroxyalkanoates and their medical applications. 7th International Conference on Polymer and Textile Biotechnology. Milan, Italy 2nd - 4th March 2011

Production of polyhydroxyalkanoates and their biomedical applications
Roy, I., Akaraonye, E., Francis, L., Rai, R., Basnett, P. and Keshavarz, T. 2011. Production of polyhydroxyalkanoates and their biomedical applications. Euro BioMat 2011 - European Symposium on Biomaterials and Related Areas. Jena, Germany

Polyhydroxyalkanoate (PHA): bacterial cellulose composites for biomedical applications
Basnett, P., Smith, C.L., Boccaccini, A.R., Knowles, J.C., Keshavarz, T. and Roy, I. 2011. Polyhydroxyalkanoate (PHA): bacterial cellulose composites for biomedical applications. 24th European Conference on Biomaterials - Annual Conference of the European Society for Biomaterials. Dublin, Ireland Sept 2011

In vitro mutagenesis of the type IV polyhydroxyalkanoate synthase from bacillus cereus SPV
Basnett, P., Philip, S.E., Markhiv, A., Vydayanathan, A. and Roy, I. 2010. In vitro mutagenesis of the type IV polyhydroxyalkanoate synthase from bacillus cereus SPV. 12th International Symposium on Biodegradable Polyesters. Stuttgart, Germany.

Microbial production of biodegradable polymers and their role in cardiac stent development
Basnett, P. and Roy, I. 2010. Microbial production of biodegradable polymers and their role in cardiac stent development. in: Mendez-Vilas, A. (ed.) Current research, technology and education topics in applied microbiology and microbial biotechnology Formatex Research Center.

Biodegradable polymers and their role in coronary stent development
Basnett, P. and Roy, I. 2010. Biodegradable polymers and their role in coronary stent development. in: Current research in technology and education topics in applied microbiology and microbial biotechnology Formatex Research Center.

Permalink - https://westminsterresearch.westminster.ac.uk/item/8y9yx/biosynthesis-of-polyhydroxyalkanoates-their-novel-blends-and-composites-for-biomedical-applications


Share this

Usage statistics

499 total views
659 total downloads
These values cover views and downloads from WestminsterResearch and are for the period from September 2nd 2018, when this repository was created.